miércoles, 22 de octubre de 2008

biologia : ADN o Acido Desoxirribonucleico


El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés DeoxyriboNucleic Acid), es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollo y el funcionamiento de todos los organismos vivos conocidos y también de los virus, excepto algunos cuyo material genético es ARN (los retrovirus). La función principal de las moléculas de ADN es el de ser portador y transmisor entre generaciones de información genética. El ADN a menudo es comparado metafóricamente a un manual de instrucciones, ya que este contiene las "instrucciones" para construir otros componentes de las células, como moléculas de ARN y proteína. Los segmentos de ADN que llevan la información genética se llaman genes, aunque otras secuencias de ADN tienen funciones estructurales o están implicadas en la regulación del empleo de esta información genética; de esta manera, el ADN adopta un papel multifuncional y básico.
Químicamente, el ADN es un largo
polímero de unidades simples llamadas nucleótidos con un armazón hecho de azúcares y grupos de fosfato unidos alternativamente entre sí mediante enlaces de tipo éster. Unido covalentemente a cada azúcar se encuentra una base nitrogenada: adenina, timina, citosina o guanina. La disposición secuencial de estas cuatro bases a lo largo de la cadena es la que codifica la información. Esta información es interpretada usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) por cada aminoácido. El código es interpretado copiando los tramos de ADN en un ácido nucleico relacionado, el ácido ribonucleico (ARN), en un proceso llamado transcripción.
Dentro de las
células, el ADN está organizado en estructuras llamadas cromosomas. Estos cromosomas se duplican antes de que las células se dividan, en un proceso llamado replicación de ADN. Los organismos Eucariotas (animales, plantas, y hongos) almacenan la inmensa mayoría de su ADN dentro del núcleo celular y una mínima parte en los orgánulos celulares mitocondrias, y en los cloroplastos en caso de tenerlos; en procariotas (las bacterias y archaeas) se encuentra en el citoplasma de la célula; y en los virus de ADN, se encuentra en el interior de la cápsida. Las proteínas cromáticas, como las histonas, comprimen y organizan el ADN dentro de los cromosomas. Estas estructuras compactas dirigen las interacciones entre el ADN y otras proteínas, ayudando al control de las partes del ADN que son transcritas.

Componentes [editar]
Estructura de soporte:
La estructura de soporte de una hebra de
ADN está formada por unidades alternas de grupos fosfato y azúcar.[25]
Ácido fosfórico:

Enlace fosfodiéster. El grupo fosfato une el carbono 5' del azúcar de un nucleósido con el carbono 3' de otro
Su
fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico, aunque como monómeros constituyentes de los ácidos nucléicos sólo aparecen en forma de nucleósidos monofosfato.
Desoxirribosa:
Es un
monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa.[23]
Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que forman
enlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación de enlaces asimétricos implica que cada hebra de ADN tiene una dirección. En una doble hélice, la dirección de los nucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denomina antiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominan extremo 5′ («cinco prima») y extremo 3′ («tres prima») respectivamente.
Bases nitrogenadas:
Las cuatro bases nitrogenadas mayoritarias que se encuentran en el
ADN son la adenina (abreviado A), citosina (C), guanina (G) y timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases son compuestos heterocíclicos y aromáticos con dos o más átomos de nitrógeno, y, dentro de las bases mayoritarias, se clasifican en dos grupos: las bases púricas o purinas (adenina y guanina), derivadas de la purina y formadas por dos anillos unidos entre sí, y las bases pirimidínicas o pirimidinas (citosina y timina), derivadas de la pirimidina y con un solo anillo.[23] En los ácidos nucléicos existe una quinta base pirimidínica, denominada uracilo (U), que normalmente ocupa el lugar de la timina en el ARN y difiere de ésta en que carece de un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, sólo aparece raramente como un producto residual de la degradación de la citosina por procesos de desaminación oxidativa.

Timina: 2, 4-dioxo, 5-metilpirimidina
Timina:
En el
código genético se representa con la letra T. Es un derivado pirimidínico con un grupo oxo en las posiciones 2 y 4, y un grupo metil en la posición 5. Forma el nucleósido timidina (siempre desoxitimidina ya que sólo aparece en el ADN) y el nucleótido timidilato o timidina monofosfato (dTMP). En el ADN, la timina siempre se empareja con la adenina de la cadena complementaria mediante 2 puentes de hidrógeno, T=A. Su fórmula química es C5H6N2O2 y su nomenclatura 2, 4-dioxo, 5-metilpirimidina.

Citosina: 2-oxo, 4-aminopirimidina
Citosina:
En el código genético se representa con la letra C. Es un derivado pirimidínico, con un
grupo amino en posición 4 y un grupo oxo en posición 2. Forma el nucleósido citidina (desoxicitidina en el ADN) y el nucleótido citidilato o (desoxi)citidina monofosfato (dCMP en el ADN, CMP en el ARN). La citosina siempre se empareja en el ADN con la guanina de la cadena complementaria mediante un triple enlace, C≡G. Su fórmula química es C4H5N3O y su nomenclatura 2-oxo, 4 aminopirimidina. Su masa molecular es de 111,10 unidades de masa atómica. La citosina fue descubierta en 1894 cuando fue aislada en tejido del timo de carnero.

Adenina: 6-aminopurina
Adenina:
En el código genético se representa con la letra A. Es un derivado de la purina con un grupo amino en la posición 6. Forma el nucleósido
adenosina (desoxiadenosina en el ADN) y el nucleótido adenilato o (desoxi)adenosina monofosfato (dAMP, AMP). En el ADN siempre se empareja con la timina de la cadena complementaria mediante 2 puentes de hidrógeno, A=T. Su fórmula química es C5H5N5 y su nomenclatura 6-aminopurina. La adenina, junto con la timina, fue descubierta en 1885 por el médico alemán Albrecht Kossel.

Guanina: 6-oxo, 2-aminopurina
Guanina:
En el código genético se representa con la letra G. Es un derivado púrico con un grupo oxo en la posición 6 y un grupo amino en la posición 2. Forma el nucleósido (desoxi)
guanosina y el nucleótido guanilato o (desoxi)guanosina monofosfato (dGMP, GMP). La guanina siempre se empareja en el ADN con la citosina de la cadena complementaria mediante tres enlaces de hidrógeno, G≡C. Su fórmula química es C5H5N5O y su nomenclatura 6-oxo, 2-aminopurina.
También existen otras bases nitrogenadas, las llamadas bases nitrogenadas minoritarias, derivadas de forma natural o sintética de alguna otra base mayoritaria. Lo son por ejemplo la
hipoxantina, relativamente abundante en el tRNA, o la cafeína, ambas derivadas de la adenina; otras, como el aciclovir, derivadas de la guanina , son análogos sintéticos usados en terapia antiviral; otras, como una de las derivadas del uracilo, son antitumorales.
Las bases nitrogenadas tienen una serie de características que les confieren unas propiedades determinadas. Una característica importante es su carácter aromático, consecuencia de la presencia en el anillo de dobles enlaces en posición conjugada. Ello les confiere la capacidad de absorber luz en la zona
ultravioleta del espectro en torno a los 260 nm, lo cual puede ser aprovechado para determinar el coeficiente de extinción del ADN y hallar la concentración existente de los ácidos nucléicos. Otra de sus características es que presentan tautomería o isomería de grupos funcionales debido a que un átomo de hidrógeno unido a otro átomo puede migrar a una posición vecina; en las bases nitrogenadas se dan dos tipos de tautomerías: tautomería lactama-lactima, donde el hidrógeno migra del nitrógeno al oxígeno del grupo oxo (forma lactama) y viceversa (forma lactima), y tautomería imina-amina primaria, donde el hidrógeno puede estar formando el grupo amina (forma amina primaria) o migrar al nitrógeno adyacente (forma imina). La adenina sólo puede presentar tautomería amina imina, la timina y el uracilo muestran tautomería doble lactama-lactima, y la guanina y citosina pueden presentar ambas. Por otro lado, y aunque se trate de moléculas apolares, las bases nitrogenadas presentan suficiente carácter polar como para establecer puentes de hidrógeno, ya que tienen átomos muy electronegativos (nitrógeno y oxígeno) presentando carga parcial negativa, y átomos de hidrógeno con carga parcial positiva, de manera que se forman dipolos que permiten que se formen estos enlaces débiles.
Se estima que el
genoma humano haploide tiene alrededor de 3.000 millones de pares de bases. Para indicar el tamaño de las moléculas de ADN se indica el número de pares de bases, y como derivados hay dos unidades de medida muy utilizadas, la kilobase (kb) que equivale a 1.000 pares de bases, y la megabase (Mb) que equivale a un millón de pares de bases.


Replicacion Del ADN
Es la capacidad que tiene el ADN de hacer copias o réplicas de su molécula. Este
proceso es fundamental para la transferencia de la información genética de generación en generación. Las moléculas se replican de un modo semiconservativo. La doble hélice se separa y cada una de las cadenas sirve de molde para la síntesis de una nueva cadena complementaria. El resultado final son dos moléculas idénticas a la original.

3. Clases de ADN
El ADN es por lo común el constituyente básico de la cromatina (cromosoma) nuclear en las células eucarióticas, pero también existe en pequeña cantidad en las mitocondrias y cloroplastos. En los procariontes forma el nucloide (que a diferencia de los eucariontes no va asociado a proteínas, es desnudo) y en los virus (DNAvirus)que lo poseen constituyen el virión o elemento infestante. Por lo común su estructura tridimensional posee giro hacia la derecha (ß-ADN,dextrogiro) que es la forma más estable y ocasionalmente posee giro hacia la izquierda (z-ADN,levógiro) Acorde a las evidencias, sólo una pequeña parte del ADN constituye genes (menos del 10 %). Existen diferentes tipos que los podemos dividir en: -ADN de copia única(el 57 % del total) formados por segmentos de aproximadamente 1000 pares de nucleótidos del longitud, una pequeña parte de este ADN contiene los genes. -ADN repetitivo(20 %)son unidades de aproximadamente 300 pares de nucleótidos* que se repiten en el genoma unas 105 veces(unidades de repetición). Se intercalan con el ADN de copia única. -ADN satélite(altamente repetitivo: 28 %)son unidades cortas de pares de nucleótidos que se repiten en el genomio. Son característicos en cada especie y pueden ser separados por centrifugación. Constituyen la heterocromatina y no se le conoce función. Los porcentajes indicados son del hombre y el ratón, y las proporciones serían las mismas en otras especies. Nucleótido*: Es una molécula compleja formado por una base nitrogenada, un hidrato de carbono y un grupo fosfato (ácido fosfórico inorgánico), unidos entre sí por enlaces covalentes.Las bases nitrogenadas son anillos heterocíclicos compuesto además del carbono e hidrógeno por nitrógeno. Son de dos tipos fundamentales, las bases púricas (por ser derivadas de la purina, de dos anillos heterocíclicos) y las bases pirimídicas (por ser derivadas de la pirimidina de un solo anillo). Dichas bases son cinco, pero en realidad solamente cuatro aparecen en el ADN. Las bases púricas presentes son la adenina y guanina. Las bases pirimídicas son la citosina y la timina (el uracilo es característico del ARN). Si bien para la constitución del ADN se unifica a un solo grupo fosfato, existen en las células una serie de nucleótidos desingular importancia en el metabolismo celular. Estos producen enlaces muy ricos de energía y los di- y tri- nucleótidos como el adenosin-tri-fosfato(ATP) son los encargados de muchos procesos metabólicos. Debe contener información útil biológicamente y que pueda trasmitirse sin alteraciones. Por lo tanto debe permitir su duplicación para permitir el paso de célula a célula y de generación en generación. Por otra parte debe ser capaz de producir materia viva(proteínas) a partir de dicha información. Y deberá ser capaz de variar ocasionalmente, para favorecer los cambios evolutivos y de adaptación.La función principal del ADN es mantener a través de una sistema de claves (código genético) la información necesaria para que las células hijas sean idénticas a las progenitoras (información genética). Este proceso se almacena en la secuencia de las bases (aparentemente aleatoria), que tiene una disposición que es copiada al ARNm (traducción) para que en el ribosoma sintetice determinada proteína. Este proceso es también denominado "dogma central de la biología molecular". Por medio de los mecanismos de recombinación y mutaciones se obtienen las variaciones necesarias para adaptaciones y evoluciones. El núcleo dirige las actividades de la célula y en él tienen lugar procesos tan importantes como la autoduplicación del ADN o replicación, antes de comenzar la división celular, y la trascripción o producción de los distintos tipos de ARN, que servirán para la síntesis de proteínas. Como puede verse en estos últimos dibujos, en una secuencia que va desde el ADN hasta el cromosoma.
El número 1 corresponde a la molécula de ADN,
En el número 2 , vemos el ADN unido a proteínas globulares, formando una estructura denominada "collar de perlas", formado por la repetición de unas unidades que son los "núcleosomas", que corresponderían a cada perla del collar.
En el número 3 se pasa a una estructura de orden superior formando un "solenoide".
En el número 4, se consigue aumentar el empaquetamiento, formando la fibra de cromatina, nuevos "bucles".
En el número 5, llegamos al grado de mayor espiralización y compactación, formando un denso paquete de cromatina, que es en realidad, un cromosoma.

4. Nucleosomas
Son unidades repetitivas formadas por un octámero de histonas (H2A, H2B, H3 y H4, dos de cada una), a manera de esferas aplanadas de 10 NM, alrededor del cual se arrolla una porción de ADN de 140 pares de bases en dos vueltas y sellados por fuera con la H1 en correspondencia con 60 pares de bases más, que actúan como un puente a otros núcleosomas. Esto hace que a la microscopía electrónica, por la digestión de ácidos débiles(se desprende la H1)se observen una estructura semejante a cuentas de un collar.
El ADN, que el de una célula humana totalmente desenrollado es de 2 mts aproximadamente de longitud, sufre con esta estructura un empaquetamiento de 5 a 7 veces de su longitud.
Las células eucarióticas, que son la unidad anatomofuncional de la vida, se hallan constituidas por una membrana plasmática, un citoplasma y un núcleo. Obviando las diferencias entre las células
animales y vegetales, en el citoplasma se encuentran los organoides que son elementos necesarios para el desarrollo, y mantenimiento celular: el retículo endoplásmico y citoesqueleto como estructura interna; el aparato de Golgi como elemento organizador de secreciones celulares; los lisosomas para la digestión sustancias alimenticias y extrañas; las mitocondrias y cloroplastos como transductores de energía y los ribosomas como sintetizadores de proteínas. En su interior encontramos el núcleo, órgano responsable de la información celular, y por lo tanto de nuestro interés. De forma en relación con la de la célula que lo contiene, puede haber uno o varios en cada una. Y con tamaño variable tiene una relación equilibrada con el citoplasma (Índice núcleo plasmático). Constituido por una membrana nuclear, doble que lo rodea y horadada por poros grandes(150 Å) para el paso selectivo de los ARNm. En su interior existe un coloide semejante al del citoplasma (núcleo plasma o carioplasma). Existe un cuerpo muy denso(a veces doble o triple), que no posee membrana, el nucleolo constituido especialmente por fosfoproteínas y ARN. En el Microscopio Electrónico, se reconocen dos partes: una zona granular, formada por gránulos y una zona fibrilar, de finas fibrillas. Ambas zonas son de ribonucleoproteínas. Durante la mitosis desaparece y luego se forma a partir del organizador nucleolar, durante la telofase y se mantiene en la interfase. La región del cromosoma que corresponde al organizador nucleolar posee los genes que codifican los ARNr solubles. La zona fibrilar corresponde a la presencia de ARNr y ARNt y la zona granular contiene precursores ribosómicos. El elemento distintivo del núcleo es un cuerpo que aparece durante la interfase tiñéndose intensamente con los colorantes básicos(ej. hematoxilina) que se lo denominó cromatina(de cromos, color).La cromatina nuclear se halla durante la interfase en dos estados: la eucromatina, que constituiría al ADN funcional (en replicación o trascripción) y que con coloraciones normales se tiñe débilmente(forma laxa) y la heterocromatina, de ADN sin actividad y que se colorea intensamente(forma densa). Durante la división celular se reorganiza en cuerpos bastoniformes característicos llamados CROMOSOMAS. La cromatina esta constituida por ADN y proteínas. La cantidad total de ADN es constante para las células diploides de cada especie(valor C), por ejemplo la Drosophíla tiene 40 veces mas que la Escherichia coli(bacteria).Los vertebrados poseen cerca de 3 picogramos(pg), unas 700 veces mas que la E. coli. El hombre 2,87 pg y la salamandra (Amphiuma) 84 pg.La molécula de ADN está constituida por dos largas cadenas de nucleótidos unidas entre sí formando una doble hélice. Las dos cadenas de nucleótidos que constituyen una molécula de ADN, se mantienen unidas entre sí porque se forman enlaces entre las bases nitrogenadas de ambas cadenas que quedan enfrentadas. La unión de las bases se realiza mediante puentes de hidrógeno, y este apareamiento está condicionado químicamente de forma que la adenina (A) sólo se puede unir con la timina (T) y la guanina (G) con la citosina (C).La estructura de un determinado ADN está definida por la "secuencia" de las bases nitrogenadas en la cadena de nucleótidos, residiendo precisamente en esta secuencia de bases la información genética del ADN. El orden en el que aparecen las cuatro bases a lo largo de una cadena en el ADN es, por tanto, crítico para la célula, ya que este orden es el que constituye las instrucciones del programa genético de los organismos. Conocer esta secuencia de bases, es decir, secuenciar un ADN equivale a descifrar su mensaje genético.
5. Mitosis
Es la división celular que consiste en que a partir de una célula se obtienen 2 células hijas, genéticamente idénticas a la madre. Se produce en cualquier célula eucarionte, ya sea diploide o haploide y como mantiene invariable el número de cromosomas, las células hijas resultarán diploides, si la madre era diploide o haploide. La división del citoplasma se llama citocinesis, y la división del núcleo, cariocinesis. Algunas células no realizan mitosis y permanecen en un estado interfásico, pero otras la realizan frecuentemente (células embrionarias, células de zonas de crecimiento, células de tejidos sujetos a desgaste.).Función: crecimiento y desarrollo del organismo multicelular, y la regeneración de tejidos expuestos a destrucción de células. En unicelulares, cumple la función de reproducción asexual.Cada mitosis está precedida por una interfase, donde se produce la duplicación del material genético. Actúa como un mecanismo que asegura que cada célula hija reciba la misma información genética.Etapas: Profase, Pro metafase, Metafase, Anafase y Telofase.Resultado de una división mitótica es la obtención de células hijas(2) con igual carga cromosómica, o sea, de una célula diploide con su carga cromosómica diplode se obtienen dos células hijas también diploides. Siguiendo el principio de que los cromosomas hermanos(homólogos) no pueden ir a un mismo polo se distribuyen aleatoramente.
6. Núcleo CelularEs un corpúsculo contenido en el citoplasma de las células animales y vegetales, que contiene los cromosomas y es centro de información que dirige la síntesis proteica . Su forma es variable (redondo, oval o elíptico, etc.), su volumen es relativo (pero la relación núcleo-citoplasma es constante); ocupa una posición central en la célula (en general), pero puede estar situado parietalmente. En todas las células existe un núcleo, pero también hay células binucleadas y plurinucleadas. El núcleo se halla rodeado por una membrana nuclear atravesada por poros. Los núcleos presentan un doble aspecto según se hallen en reposo o en etapa de división celular. En período de reposo se observan en su interior nucleolos. Su composición química es compleja (proteínas, lípidos, compuestos inorgánicos, ADN, ARN, protaminas e histonas).En su interior se encuentra los cromosomas, que contienen el material genético responsable del funcionamiento celular y de la transmisión de los caracteres que se heredan.
El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado núcleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre núcleoplasma y citoplasma. El núcleo es un orgánulo característico de las células eucariota. El material genético de la célula se encuentra dentro del núcleo en forma de cromatina.
7. El ARN: Otro Acido Importante
Este ácido, al igual que el ADN, está compuesto por tres sustancias: ácido fosfórico, un monosacárido del tipo pentosa (la ribosa) y una base nitrogenada cíclica que puede ser púrica (uracilo) o pirimidínica (adenina o citosina). La unión de la base nitrogenada con la pentosa forma un nucleósido, el cual al unirse con el ácido fosfórico da un nucleótido; la unión entre sí en enlace diester da el polinucleótido, en este caso el ácido ribonucleico. En algunos virus el ARN es el material de la herencia y experimenta autoduplicación; pero básicamente se encuentra en los ribosomas (ácido ribonucleico ribosómico) y como ácido de transferencia y mensajero.
Dos Grandes
Grupos De CelulasExisten dos tipos de células: las procariotas, que se encuentran en los organismos agrupados en el reino Moneras (bacterias) y se caracterizan, sobre todo, por la ausencia de un núcleo, es decir, no poseen una membrana nuclear que encierre la información genética de la célula, y las células eucariota, que están presentes en todos los seres vivos, excepto en las bacterias, y poseen un núcleo verdadero. Además de la membrana nuclear, las células eucariota poseen compartimientos y sistemas de transportes internos, formados por una compleja red de membranas.

No hay comentarios: